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1. INTRODUCTION AND 

PRELIMINARIES 

       Fixed point theory constitutes a 

fundamental pillar of mathematical analysis, 

serving as a powerful framework for the 

systematic study of mappings and their 

structural properties in a wide range of 

mathematical spaces. Among the classical 

results in this area, the Banach fixed point 

theorem commonly referred to as the 

Contraction Mapping Theorem holds a 

distinguished position as perhaps the most 

celebrated result within the theory of metric 

spaces. The significance of this theorem 

transcends its original formulation, as it has 

inspired a vast body of research devoted to its 

refinement, extension, and application across 

diverse mathematical and applied contexts. 

In particular, the last few decades have 

witnessed an intensification of efforts aimed 

at exploring fixed point results within 

increasingly sophisticated and generalized 

structures, thereby motivating the 

development and investigation of fixed point 

theorems across various classes of metric 

spaces 

On the other hand, some authors are 

interested and have tried to give 

generalizations of metric spaces in different 

ways. In 1963 Gahler [6] gave the concepts 

of 2- metric space further in 1992 Dhage [2] 

modified the concept of 2- metric space and 

introduced the concepts of D-metric space 

also proved fixed point theorems for 

selfmaps of such spaces. Later researchers 

have made a significant contribution to fixed 

point of D- metric spaces in [1], [3], and [4]. 

Unfortunately almost all the fixed point 

theorems proved on D-metric spaces are not 

valid in view of papers [7], [8] and [9].  

Sedghi et al. [10] modified the concepts of D- 

metric space and introduced the concepts of 

D*- metric space also proved a common 

fixed point theorems in D*- metric space. 

       Recently, Sedghi et al [11] introduced 

the concept of S- metric space which is 

different from other space and proved fixed 

point theorems in S-metric space. They also 
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gives some examples of S- metric spaces 

which shows that S- metric space is different 

from other spaces. In fact they gives 

following concepts of S- metric space. 

 

Definition 1.1([11]): Let X be a non-empty 

set. An S-metric space on X is a function             

S: X3 → [0, ∞) that satisfies the following 

conditions, for each x, y, z, a ∈ X 

(i) S(x, y, z) ≥ 0  

(ii) S(x, y, z) = 0 if and only if x 

= y = z. 

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, 

a) + S (z, z, a)    

The pair (X, S) is called an S–metric space. 

Immediate examples of such S-metric spaces 

are: 

 

Example 1.2: Let ℝ be the real line. Then 

S(x, y, z) = |x – y| + |y – z| + |z – x| for each           

  x, y, z ∈ℝ is an S-metric on ℝ. This S-metric 

is called the usual S-metric on ℝ.  

 

Example 1.3:  Let X = ℝ2, d be the ordinary 

metric on X.  

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is 

an S- metric on X. If we connect the points x, 

y, z by a line, we have a triangle and if we 

choose a point a mediating this triangle then 

the inequality S(x, y, z) ≤ S(x, x, a) + S(y, y, 

a) + S (z, z, a) holds. In fact   

S(x, y, z) = d(x, y) + d(y, z) + d (z, x) 

                ≤ d(x, a) + d(a, y) + d (y, a) + d(a, 

z) + d(z, a) + d (a, x) 

                = S(x, x, a) + S(y, y, a) + S (z, z, a) 

 

Example 1. 4: Let X = ℝn and || . || a norm on 

X, then S(x, y, z) = ||x – z|| + ||y – z|| is an S-

metric on X.  

 

Remark 1. 5: it is easy to see that every D*-

metric is S-metric, but in general the 

converse is not true, see the following 

example. 

 

 Example 1. 6:  Let X = ℝn and || . || a norm 

on X, then S(x, y, z) = ||y + z – 2x|| + ||y – z|| 

is an S-metric on X, but it is not D*-metric 

because it is not symmetric. 

 

Lemma 1. 7: In an S–metric space, we have 

S(x, x, y) = S(y, y, x). 

Proof: By the third condition of S-metric, we 

get 

  S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, 

x) = S(y, y, x)…… (1) 

  and similarly 

S(y, y, x) ≤  S( y, y, y)+ S(y, y, y) + S(x, x, y) 

= S(x, x, y)……(2) 

Hence, by (1) and (2), we obtain S(x, x, y) = 

S(y, y, x). 
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Definition 1.8: Let (X, S) be an S-metric 

space. For x ∈X and r > 0, we define the open 

ball BS(x, r) and closed ball BS[x, r] with a 

center x and a radius r as follows                                     

                    BS(x, r) = {y ∈ X; S(x, y, y) < r}  

                    BS[x, r] = {y ∈ X; S(x, y, y) ≤ r} 

For example, Let X =ℝ. Denote S(x, y, z) = | 

y + z – 2x | + | y – z | for all x, y, z ∈ℝ. 

Therefore BS(1, 2) = {y ∈ℝ ; S(y, y, 1) < 2} 

             = {y∈ℝ ; | y – 1|< 1} = (0, 2). 

 

Definition 1.9: Let (X, S) be an S–metric 

space and A ⊂ X.  

 (1)If for every x ∈ A, there is a r > 0 such 

that BS(x, r) ⊂ A, then the subset A called an     

 open subset of X 

(2) If there is a r > 0 such that S(x, x, y) < r 

for all x, y ∈ A then A is said to be S–

bounded. 

             (3)  A sequence {xn} in X converge to x if 

and only if S(xn, xn, x) → 0 as n →∞. That is 

for        

            each ∈ > 0, there exists n0 ∈ ℕ such that for 

all n ≥ n0, S(xn, xn, x) < ∈ and we denote this 

by lim
n →∞

xn = x  

             (4) A sequence {xn} in X is called a Cauchy 

sequence if for each ∈ > 0, there exists n0 ∈ 

ℕ such that S(xn, xn, xm) < ∈ for each m , n ≥ 

n0   

(5) The S–metric space (X, S) is said to be 

complete if every Cauchy sequence is 

convergent sequence. 

           (6) Let τ be the set of all A ⊂ X with x ∈ A if 

and only if there exists r > 0 such that             

            BS(x, r)⊂A. Then τ is a topology on X 

(induced by the S-metric S).                

          (7) If (X, τ) is a compact topological space we 

shall call (X, S) is a compact S–metric space. 

 

Lemma 1. 10([11]): Let (X, S) be an S-metric 

space. If r > 0 and x ∈ X, then the open 

ball            

                           BS(x, r) is an open subset of X. 

 

  Lemma1. 11([11): Let (X, S) be an S-metric 

space. If the sequence {xn} in X 

converges to x,                  

                                 then x is unique. 

 

Lemma1. 12([11]): Let (X, S) be an S-metric 

space. If the sequence {xn} in X 

converges to x,       

                         then {xn} is a Cauchy sequence.  

 

Lemma1. 13([11]): Let (X, S) be an S-metric 

space. If there exists sequences {xn} and 

{yn} such      

                          that lim
n →∞

xn = x and lim
n →∞

yn = y, 

then  lim
n→∞

S(xn,xn,yn) = S(x, x, y). 
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Lemma1. 14: Let (X, d) be a metric space. Then 

we have  

1. Sd(x, y, z) = d(x, y) + d(y, z) + d(z, x) for all 

x, y, z ∈ X is an S-metric on X 

2. xn → x in (X, d) if and only if Xn → x in (X, 

Sd) 

3. {xn} is a Cauchy sequence in (X, d) if and 

only if {xn} is a Cauchy sequence in (X, Sd) 

4. (X, d) is complete if and only if (X, Sd) is 

complete                                                             

Proof: (1) See [ Example (3), Page 260] 

(2) xn → x in (X, d) if and only if d(xn, x) → 0, 

if and only if Sd(xn, xn, x) = 3d(xn, x) → 0 that 

is, xn → x in (X, Sd) 

(3)  {xn}is a Cauchy in  (X, d) if and only if 

d(xn, xm) → 0 as n, m → ∞, if and only if       

Sd(xn, xn, xm) = 3d(xn, xm) → 0 n, m → ∞,  that 

is, {xn} is Cauchy in (X, Sd) 

(4) It is a direct consequence of (2) and (3) 

 

Notation: For any selfmap T of X, we denote 

T(x) by Tx.  

If P and Q are selfmaps of a set X, then any z 

∈ X such that Pz = Qz = z is called a common 

fixed point of P and Q. 

Two selfmaps P and Q of X are said to be 

commutative if PQ = QP where PQ is their 

composition PoQ defined by (PoQ) x = PQx 

for all x ∈ X. 

 

             Definition 1.15: Suppose P and Q are 

selfmaps of a S–metric space (X, S) satisfying 

the condition Q(X) ⊆ P(X). Then for any x0 ∈ 

X, Qx0 ∈ Q(X) and hence Qx0 ∈ P(X), so that 

there is a x1 ∈ X with Qx0 = Px1, since Q(X) ⊆ 

P(X). Now Qx1 ∈ Q(X) and hence there is a 

x2 ∈ X with Qx2 ∈ Q(X) ⊆ P(X) so that Qx1 = 

Px2.  Again Qx2 ∈ Q(X) and hence Qx2 ∈ P(X) 

with Qx2 = Px3. Thus repeating this process 

to each x0 ∈ X, we get a sequence {xn} in X 

such that Qxn = Pxn+1 for n ≥ 0. We shall call 

this sequence as an associated sequence of 

x0 relative to the two selfmaps P and Q. It 

may be noted that there may be more than one 

associated sequence for a point x0 ∈ X 

relative to selfmaps P and Q. 

    Let P and Q are selfmaps of a S-metric 

space (X, S) such that Q(X) ⊆ P(X). For any 

xo ϵ X, if {xn} is a sequence in X such that  

Qxn = Pxn+1 for  n ≥ 0, then {xn} is called an 

associated sequence of x0 relative to the two 

selfmaps P and Q.  

Definition 1.16: A function Ø: [0, ∞) → [0, 

∞) is said to be a contractive modulus, if            

Ø(0) = 0 and  Ø(t) < t for t > 0. 

Definition 1.17: A real valued function Ø 

defined on X ⊆ ℝ is said to be upper semi 

continuous, if lim
𝑛→∞

sup Ø(𝑡n) ≤ Ø (t) for 
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every sequence {tn} in X with tn → t as n → 

∞. 

Definition 1.18: If P and Q are selfmaps of a 

S-metric space (X, S) such that for every 

sequence {xn} in X with lim
𝑛→∞

𝑃𝑥n = lim
𝑛→∞

𝑄𝑥n 

= t, we have  

lim
𝑛→∞

𝑆(PQxn, QPxn, QPxn) = 0, then we say 

that P and Q are compatible. 

 

2. THE MAIN RESULTS: 

2. 1 Introduction: If (X, S) is a complete S- 

metric space and P, Q are selfmaps satisfying 

certain conditions, we shall prove that, they 

have a common fixed point. 

2.1.1 Theorem: Let P and Q be selfmaps of a 

S-metric space (X, S) satisfying the 

conditions 

      (i)   Q(X) ⊆ P(X) 

      (ii) S(Qx, Qy, Qy) ≤ Ø (ξ(x, y)) for all x, 

y ϵ X 

       where Ø is an upper semi continuous 

and contractive modulus and  

(ii)ʹ ξ(x, y) = max {S(Px, Py, Py), S(Px, 

Qx, Qx), S(Py, Qy, Qy), 

                                                          

1

2
[S(Px, Qy, Qy) + S(Py, Qx, Qx)]} 

(i) P is continuous and 

(iv) the pair (P, Q) is  compatible  

       Further, if 

(ii) there exists a point x0 ϵ X and an  

associated sequence {xn} of x0  

relative to the two selfmaps  such that 

the sequences {Pxn}and {Qxn} 

converge to some z ϵ X,  

 Then z is the unique common fixed point for 

P and Q.  

Proof:  From (v), we get 

(2.1.2)   Px2n, Qx2n, Px2n+1, Qx2n+1 → z as n→ 

∞. 

   Now, since P is continuous, we have, 

by (2.1.2) 

(2.1.3)  P2x2n+1 → Pz and PQx2n+1→Pz as n 

→ ∞ 

        Since the pair (P, Q) is compatible, 

we have, in view of (2.1.2) that  

(2.1.4)  lim
𝑛→∞

𝑆(𝑃𝑄𝑥2n+1, QPx2n+1, QPx2n+1) = 

0 

(2.1.5)  QPx2n+1 → Pz as n→ ∞. 

 Also from (ii), we have 

(2.1.6)  S(QPx2n+1, Qx2n, Qx2n)  ≤  Ø(ξ(Px2n+1, 

x2n)) 

where ξ(Px2n+1, x2n) = max{S(P2x2n+1, 

Px2n, Px2n),  S(P2x2n+1, QPx2n+1, 

QPx2n+1),  

                    S(Px2n, Qx2n, Qx2n), 
1

2
[S(P2x2n+1, 

Qx2n, Qx2n) + S(Px2n, QPx2n+1, QPx2n+1)]} 
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    which on letting n to ∞ and using the 

continuity of S, gives 

lim
𝑛→∞

𝜉(𝑃𝑥2n+1, x2n) = max{S(Pz, z, z), S(Pz, 

Pz, Pz), S(z, z, z), 
1

2
 [S(Pz, z, z) + S(Pz, z, z)]}                                                                          

                                     = D*(Pz,z,z) 

Therefore letting n to ∞ in (2.1.6), and using 

the above we get 

(2.1.7)  S(Pz, z, z)  ≤  Ø(S(Pz, z, z)). 

Now, if Sz ≠ z, then S(Pz, z, z) > 0 and by the 

definition of Ø, we get  

                   Ø(S(Pz, z, z)) < D*(Pz, z, z) 

contradicting (2.1.7) 

Thus we have Pz = z. 

Now again from (ii) we have 

(2.1.8)  S(Qz, Qx2n, Qx2n) = max {S(Pz, Px2n, 

Px2n), S(Pz, Qz, Qz), S(Px2n, Qx2n , Qx2n ), 

                                                          
1

2
[S(Pz, 

Qx2n, Qx2n)+ S(Px2n , Qz, Qz)]} 

in which on letting n to ∞, using Sz = z, the 

continuity of S and the condition (v), 

we get 

lim
𝑛→∞

𝜉(z, x2n) = max {S(Pz, z, z), S(z, Qz, Qz), 

S(z, z, z), 
1

2
[S(Pz, z, z) + S(Pz ,z, z)]} 

                            = S(z, Qz, Qz). 

Again letting n to ∞ in (2.1.8) and using the 

above, we get 

(2.1.9)    S(Qz, z, z) ≤ Ø(S(Qz, z, z))  

              and this will be a contradiction if Qz 

≠ z, therefore Qz = z. 

              Thus ‘z’ is a common fixed point of 

P and Q. 

 To prove that z is the unique common 

fixed point of P and Q. If possible suppose 

that z' is another common fixed point of P and 

Q, then from (ii), we have  

(2.1.10)   S(z, z', z') = S(Qz, Qz', Qz')  ≤  

Ø(ξ(z, z')). 

where ξ(z, z')= max{S(Pz, z', z'), S(z, Qz, 

Qz), S(Pz', Qz', Qz'), 
1

2
[S(Pz, z', 

z')+S(Pz', Qz,Qz)]} 

                       = S(z, z', z') 

              so that (2.1.10) gives 

(2.1.11)   S(z, z', z') ≤  Ø (S(z, z', z')) 

            and this will give a contradiction if z ≠ z'. 

Therefore z = z'. Thus z is the unique 

common fixed point of P and Q. 

            2.2 A Common Fixed Point Theorem for 

Two Selfmaps of a Complete S - metric 

space 

2.2.1 Theorem:  Suppose P and Q are 

selfmaps of a S -metric space (X, S) 

satisfying conditions (i) to (iv) of Theorem 

2.1.1. 

Further, if  

(v)'    (X, S) is complete. 
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            then P and Q have unique common 

fixed point. 

Before we give a proof of this, we prove the 

following lemma 

2.2.2 Lemma: Let (X, S) be a S-metric space 

and P and Q be selfmaps of X such 

that 

(i)       Q(X) ⊆ P(X) 

(ii)      S(Qx, Qy, Qy) ≤ c ξ(x, y)for all x, y ϵ 

X 

           where 0 ≤ c < 1 and ξ(x, y) is as 

defined in (ii)' of Theorem 2.1.1 

           Further if 

(iii)      (X, S) is complete 

 then for each x0 ϵ X and for any of its 

associated sequence {xn} relative to the 

selfmaps, the sequences {Qxn} and {Pxn} 

converges to same point z ϵ X. 

Proof:  Suppose P and Q are selfmaps of a S-

metric space (X, S) for which the 

conditions (i) and (ii) hold. 

 Let x0 ϵ X and {xn} be an associated 

sequence of x0 relative to two 

selfmaps. Then, since   Qx2n = Px2n+1 

and Qx2n+1 = Px2n+2 for n ≥ 0. 

Note that  

ξ(x2n, x2n+1) = max {S(Px2n, Px2n+1, Px2n+1), 

S(Px2n, Qx2n, Qx2n),  S(Px2n+1, Qx2n+1, 

Qx2n+1),                                                  

                                                                  

1

2
[S(Px2n,Qx2n+1, Qx2n+1) + S(Px2n+1, Qx2n, 

Qx2n)]} 

                      = max {S(Px2n,Qx2n, Qx2n),  

S(Px2n, Qx2n, Qx2n), S(Qx2n, Qx2n+1, Qx2n+1),     

                                                                

1

2
[S(Px2n, Qx2n+1, Qx2n+1) + S(Qx2n, Qx2n, 

Qx2n)]} 

               = max {S(Qx2n-1, Qx2n, Qx2n),  

S(Qx2n, Qx2n+1, Qx2n+1),  
1

2
 S(Qx2n-1, Qx2n+1, 

Qx2n+1)}. 

ξ(x2n, x2n+1)   ≤  max { S(Qx2n-1, Qx2n, Qx2n),  

S(Qx2n, Qx2n+1, Qx2n+1)}      

     since  
1

2
 S(Qx2n-1, Qx2n+1, Qx2n+1) ≤ max 

{S(Qx2n-1, Qx2n, Qx2n), S(Qx2n, Qx2n+1, 

Qx2n+1)} 

Now, by (ii), S(Qx2n, Qx2n+1, Qx2n+1) ≤  c . 

ξ(x2n, x2n+1) ≤ c.  max { S(Qx2n-1, Qx2n, Qx2n),  

S(Qx2n, Qx2n+1, Qx2n+1)} 

since 0 ≤ c < 1, it follows that the  

max { S(Qx2n-1,Qx2n, Qx2n), S(Qx2n, Qx2n+1, 

Qx2n+1)} = S(Qx2n-1, Qx2n, Qx2n) 

therefore      S(Qx2n, Qx2n+1, Qx2n+1) ≤ c. 

S(Qx2n-1, Qx2n, Qx2n) ……..(A) 

Similarly, we can show that 

                     S(Qx2n-1, Qx2n, Qx2n) ≤ c. 

S(Qx2n-1, Qx2n-2, Qx2n-2) ……..(B) 

From (A) and (B), we get 

S(Qx2n, Qx2n+1, Qx2n+1) ≤  c2 S(Qx2n-1, Qx2n-2, 

Qx2n-2) 
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                                       ≤ c4 S(Qx2n-3, Qx2n-4, 

Qx2n-4) 

- - - - - - 

- - - - - - - - - 

- - - - -  

- - - - - - 

- - - - - - - - - 

- - - - -  

                                       ≤ c2n S(Qx1, Qx0, 

Qx0) 

 Since c2n → 0 as n → ∞ (because c < 

1), the sequence {Qxn} is a Cauchy sequence 

in (X, S) and since it is complete, it converges 

to a point say z ϵ X. 

       Similarly we can prove that {Px2n} 

converges to a point say z' ϵ X. Since Px2n+1 

=Qx2n, we get z = z'.  (In fact, z' = lim
𝑛→∞

𝑃 x2n+1 

= lim
𝑛→∞

𝑄 x2n = z), proving lemma. 

2.2.3 Remark: The converse of Lemma 2.2.2 

is not true. That is suppose P and Q are 

selfmaps of a S-metric space (X, S) satisfying 

condition (i) and (ii) of Lemma 2.2.2; even  if 

for each  x0 ϵ X and for each associated 

sequence  {xn} of x0 relative to P and Q, the 

sequence {Pxn} and {Qxn} converges in X, 

then (X, S) need not complete. 

2. 2. 4 Corollary: Suppose P and Q are 

selfmaps of a S-metric space (X, S) satisfying 

conditions (i) to (iv) of Theorem 2. 1. 1. 

Further, if 

(v)ʹ (X, S) is complete 

 then P and Q have unique common fixed 

point.    

Proof: In view of Lemma 2.2.2 the condition 

(v) of Theorem 2.1.1 holds in view of (v)' 

Hence the corollary follows from Theorem 

2.1.1. 

2.2.5: Remark: Taking Ø(t) = c t where 0 ≤ 

c < 1 in the Theorem 2.1.1, we get the 

following corollary immediately. 

2.2.6: Corollary:  Let P and Q be selfmaps 

of a S-metric space (X, S) satisfying the 

conditions (i), (iii), (iv), (v) and  

(ii)''      S(Qx, Qy, Qy) ≤ c ξ(x, y) 

         where ξ(x, y) is same as defined in (ii)' 

of Theorem 2.1.1. Then z is the unique 

common fixed point of  P and Q. 

                Now we show that a common fixed 

point theorem for two selfmaps of metric 

space proved by Das and Naik ([5]) follows 

as a particular case of our Theorem. 

2.2.7 Corollary ([5]):  Let P and Q be two 

selfmaps of a metric space (X, d) such that 

(i)         Q(X) ⊆ P(X) 

(ii)        d(Qx, Qy)  ≤ Ø(𝜂(x, y)) for all x, y ϵ 

X, 

             where 0 ≤ c < 1 and  
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(ii)'        η(x, y) = max {d(Px, Py), d(Px, Qx), 

d(Py, Qy), d(Px, Qy), d(Py, Qx)}  

(iii)        P is continuous, 

              and 

(iv)       PQ = QP 

             Further, if 

(v)        X is complete 

          Then P and Q have a unique common 

fixed point in X. 

Proof:  Given (X, d) is a metric space 

satisfying condition (i) to (v) of the corollary. 

If         S(x, y, z) = max {d(x, y), d(y, z), d (z, 

x)} then (X, S) is a S-metric space and                                   

S(x, y, x)= d(x, y). Therefore (ii) can be 

written as S(Qx, Qy, Qy) ≤ c. η(x, y) for all 

x, y ϵ X where  η(x, y) = max {S(Px, Py, Py), 

S(Px, Qx, Qx), S(Py, Qy, Qy), S(Px, Qy, Qy), 

S(Py, Qx, Qx)} = ξ(x, y), 

which is the same as condition (ii) of 

Theorem 2.2.1. Also since  (X, d) is 

complete, we have (X, S) is complete by 

Corollary1.13. 

  Now, P and Q are selfmaps on (X, S) 

satisfying conditions of Theorem 2.2.1 and 

hence the corollary follows.  
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